Выражение закона гука. Закон гука определение и формула. Определение перемещений при растяжении-сжатии. Закон Гука для участка бруса. Определение перемещений сечений бруса

  • 19.02.2024

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

т о закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, -тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.

Коэффициент упругости

Коэффицие́нт упру́гости (иногда называют коэффициентом Гука, коэффициентом жёсткости или жёсткостью пружины) - коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу упругости. Применяется в механике твердого тела в разделе упругости. Обозначается буквой k , иногда D или c . Имеет размерность Н/м или кг/с2 (в СИ), дин/см или г/с2 (в СГС).

Коэффициент упругости численно равен силе, которую надо приложить к пружине, чтобы её длина изменилась на единицу расстояния.

Определение и свойства

Коэффициент упругости по определению равен силе упругости, делённой на изменение длины пружины: k = F e / Δ l . {\displaystyle k=F_{\mathrm {e} }/\Delta l.} Коэффициент упругости зависит как от свойств материала, так и от размеров упругого тела. Так, для упругого стержня можно выделить зависимость от размеров стержня (площади поперечного сечения S {\displaystyle S} и длины L {\displaystyle L}), записав коэффициент упругости как k = E ⋅ S / L . {\displaystyle k=E\cdot S/L.} Величина E {\displaystyle E} называется модулем Юнга и, в отличие от коэффициента упругости, зависит только от свойств материала стержня.

Жёсткость деформируемых тел при их соединении

Параллельное соединение пружин. Последовательное соединение пружин.

При соединении нескольких упруго деформируемых тел (далее для краткости - пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном - уменьшается.

Параллельное соединение

При параллельном соединении n {\displaystyle n} пружин с жёсткостями, равными k 1 , k 2 , k 3 , . . . , k n , {\displaystyle k_{1},k_{2},k_{3},...,k_{n},} жёсткость системы равна сумме жёсткостей, то есть k = k 1 + k 2 + k 3 + . . . + k n . {\displaystyle k=k_{1}+k_{2}+k_{3}+...+k_{n}.}

Доказательство

В параллельном соединении имеется n {\displaystyle n} пружин с жёсткостями k 1 , k 2 , . . . , k n . {\displaystyle k_{1},k_{2},...,k_{n}.} Из III закона Ньютона, F = F 1 + F 2 + . . . + F n . {\displaystyle F=F_{1}+F_{2}+...+F_{n}.} (К ним прикладывается сила F {\displaystyle F} . При этом к пружине 1 прикладывается сила F 1 , {\displaystyle F_{1},} к пружине 2 сила F 2 , {\displaystyle F_{2},} … , к пружине n {\displaystyle n} сила F n . {\displaystyle F_{n}.})

Теперь из закона Гука (F = − k x {\displaystyle F=-kx} , где x - удлинение) выведем: F = k x ; F 1 = k 1 x ; F 2 = k 2 x ; . . . ; F n = k n x . {\displaystyle F=kx;F_{1}=k_{1}x;F_{2}=k_{2}x;...;F_{n}=k_{n}x.} Подставим эти выражения в равенство (1): k x = k 1 x + k 2 x + . . . + k n x ; {\displaystyle kx=k_{1}x+k_{2}x+...+k_{n}x;} сократив на x , {\displaystyle x,} получим: k = k 1 + k 2 + . . . + k n , {\displaystyle k=k_{1}+k_{2}+...+k_{n},} что и требовалось доказать.

Последовательное соединение

При последовательном соединении n {\displaystyle n} пружин с жёсткостями, равными k 1 , k 2 , k 3 , . . . , k n , {\displaystyle k_{1},k_{2},k_{3},...,k_{n},} общая жёсткость определяется из уравнения: 1 / k = (1 / k 1 + 1 / k 2 + 1 / k 3 + . . . + 1 / k n) . {\displaystyle 1/k=(1/k_{1}+1/k_{2}+1/k_{3}+...+1/k_{n}).}

Доказательство

В последовательном соединении имеется n {\displaystyle n} пружин с жёсткостями k 1 , k 2 , . . . , k n . {\displaystyle k_{1},k_{2},...,k_{n}.} Из закона Гука (F = − k l {\displaystyle F=-kl} , где l - удлинение) следует, что F = k ⋅ l . {\displaystyle F=k\cdot l.} Сумма удлинений каждой пружины равна общему удлинению всего соединения l 1 + l 2 + . . . + l n = l . {\displaystyle l_{1}+l_{2}+...+l_{n}=l.}

На каждую пружину действует одна и та же сила F . {\displaystyle F.} Согласно закону Гука, F = l 1 ⋅ k 1 = l 2 ⋅ k 2 = . . . = l n ⋅ k n . {\displaystyle F=l_{1}\cdot k_{1}=l_{2}\cdot k_{2}=...=l_{n}\cdot k_{n}.} Из предыдущих выражений выведем: l = F / k , l 1 = F / k 1 , l 2 = F / k 2 , . . . , l n = F / k n . {\displaystyle l=F/k,\quad l_{1}=F/k_{1},\quad l_{2}=F/k_{2},\quad ...,\quad l_{n}=F/k_{n}.} Подставив эти выражения в (2) и разделив на F , {\displaystyle F,} получаем 1 / k = 1 / k 1 + 1 / k 2 + . . . + 1 / k n , {\displaystyle 1/k=1/k_{1}+1/k_{2}+...+1/k_{n},} что и требовалось доказать.

Жёсткость некоторых деформируемых тел

Стержень постоянного сечения

Однородный стержень постоянного сечения, упруго деформируемый вдоль оси, имеет коэффициент жёсткости

K = E S L 0 , {\displaystyle k={\frac {E\,S}{L_{0}}},} Е - модуль Юнга, зависящий только от материала, из которого выполнен стержень; S - площадь поперечного сечения; L 0 - длина стержня.

Цилиндрическая витая пружина

Витая цилиндрическая пружина сжатия.

Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости

K = G ⋅ d D 4 8 ⋅ d F 3 ⋅ n , {\displaystyle k={\frac {G\cdot d_{\mathrm {D} }^{4}}{8\cdot d_{\mathrm {F} }^{3}\cdot n}},} d - диаметр проволоки; d F - диаметр намотки (измеряемый от оси проволоки); n - число витков; G - модуль сдвига (для обычной стали G ≈ 80 ГПа, для пружинной стали G ≈ 78.5 ГПа, для меди ~ 45 ГПа).

Источники и примечания

  1. Упругая деформация (рус.). Архивировано 30 июня 2012 года.
  2. Dieter Meschede, Christian Gerthsen. Physik. - Springer, 2004. - P. 181 ..
  3. Bruno Assmann. Technische Mechanik: Kinematik und Kinetik. - Oldenbourg, 2004. - P. 11 ..
  4. Динамика, Сила упругости (рус.). Архивировано 30 июня 2012 года.
  5. Механические свойства тел (рус.). Архивировано 30 июня 2012 года.

10.Закон Гука при растяжении-сжатии. Модуль упругости (модуль Юнга).

При осевом растяжении или сжатии до предела пропорциональности σ pr справедлив закон Гука, т.е. закон о прямо пропорциональной зависимости между нормальными напряжениями и продольными относительными деформациями :


(3.10)

или

(3.11)

Здесь Е – коэффициент пропорциональности в законе Гука имеет размерность напряжения и называется модулем упругости первого рода , характеризующим упругие свойства материала, или модулем Юнга .

Относительной продольной деформацией называется отношение абсолютной продольной деформации участка

стержня к длине этого участка до деформации:


(3.12)

Относительная поперечная деформация будет равна: " = = b/b, где b = b 1 – b.

Отношение относительной поперечной деформации " к относительной продольной деформации , взятое по модулю, есть для каждого материала величина постоянная и называется коэффициентом Пуассона:


Определение абсолютной деформации участка бруса

В формулу (3.11) вместо и подставим выражения (3.1) и (3.12):



Отсюда получим формулу для определения абсолютного удлинения (или укорочения) участка стержня длиной :


(3.13)

В формуле (3.13) произведение ЕА называется жесткостью бруса при растяжении или сжатии, которая измеряется в кН, или в МН.

По этой формуле определяется абсолютная деформация , если на участке продольная сила постоянна. В случае, когда на участке продольная сила переменна, она определяется по формуле:


(3.14)

где N(х) – функция продольной силы по длине участка.

11.Коэффициент поперечной деформации (коэффициент Пуассона

12.Определение перемещений при растяжении-сжатии. Закон Гука для участка бруса. Определение перемещений сечений бруса

Определим горизонтальное перемещение точки а оси бруса (рис. 3.5) – u a: оно равно абсолютной деформации части бруса а d , заключенной между заделкой и сечением, проведенным через точку, т.е.

В свою очередь удлинение участка а d состоит из удлинений отдельных грузовых участков 1, 2 и 3:

Продольные силы на рассматриваемых участках:




Следовательно,






Тогда

Аналогично можно определить перемещение любого сечения бруса и сформулировать следующее правило:

перемещение любого сечения j стержня при растяжении–сжатии определяется как сумма абсолютных деформаций n грузовых участков, заключенных между рассматриваемым и неподвижным (закрепленным) сечениями, т.е.


(3.16)

Условие жесткости бруса запишется в следующем виде:


, (3.17)

где

– наибольшее значение перемещения сечения, взятое по модулю из эпюры перемещений;u – допускаемое значение перемещения сечения для данной конструкции или ее элемента, устанавливаемое в нормах.

13.Определение механических характеристик материалов. Испытание на растяжение. Испытание на сжатие.

Для количественной оценки основных свойств материалов, как


Правило, экспериментально определяют диаграмму рас­тяжения в координатах  и  (рис. 2.9), На диаграмме от­мечены характерные точки. Дадим их определение.

Наибольшее напряже­ние, до которого материал следует закону Гука, назы­вается пределом про­порциональности П . В пределах закона Гука тангенс угла наклона прямой  = f () к оси  определяется величиной Е .

Упругие свойства материала сохраняются до напряжения  У , называемого пределом упругости . Под пределом упругости  У понимается такое наибольшее напряжение, до которого матери­ал не получает остаточных деформаций, т.е. после полной разгруз­ки последняя точка диаграммы совпадает с начальной точкой 0.

Величина  Т называется пределом текучести материала. Под пределом текучести понимается то напряжение, при котором происходит рост деформаций без заметного увеличения нагрузки. Если необходимо различать предел текучести при растяжении и сжатии  Т соответственно заменяется на  ТР и  ТС . При напряже­ниях больших  Т в теле конструкции развиваются пластические деформации  П , которые не исчезают при снятии нагрузки.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит на­звание предела прочности, или временного сопротивления, и обоз­начается через,  ВР (при сжатии  ВС ).

При выполнении практических расчетов реальную диаграмму (рис. 2.9) упрощают, и с этой целью применяются различные ап­проксимирующие диаграммы. Для решения задач с учетом упру­го пластических свойств материалов конструкций чаще всего применяется диаграмма Прандтля . По этой диаграмме на­пряжение изменяется от нуля до предела текучести по закону Гука  = Е , а далее при росте ,  =  Т (рис. 2.10).

Способность материалов получать остаточные деформации но­сит название пластичности . На рис. 2.9 была представлена ха­рактерная диаграмма для пластических материалов.


Рис. 2.10 Рис. 2.11

Противоположным свойству пластичности является свойство хрупкости , т.е. способность материала разрушаться без образова­ния заметных остаточных деформаций. Материал, обладающий этим свойством, называется хрупким . К хрупким материалам относятся чугун, высокоуглеродистая сталь, стекло, кирпич, бетон, природные камни. Характерная диаграмма деформации хрупких материалов изображена на рис. 2.11.

1. Что называется деформацией тела? Как формулируется закон Гука?

Вахит шавалиев

Деформациями называются любые изменения формы, размеров и объема тела. Деформация определяет конечный результат движения частей тела друг относительно друга.
Упругими деформациями называются деформации, полностью исчезающие после устранения внешних сил.
Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.
Силы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.
Закон Гука
Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:
Сила упругости, возникающая при деформации тела прямо пропорциональна абсолютному удлинению тела и направлена в сторону, противоположную смещению частиц тела:
\
где F_x- проекция силы на ось x, k-жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.
http://ru.solverbook.com/spravochnik/mexanika/dinamika/deformacii-sily-uprugosti/

Варя гусева

Деформация - это изменение формы или объёма тела. Виды деформации - растяжение или сжатия (примеры: растянуть резинку или сжать, аккордеон) , изгиб (прогнулась доска под человеком, изогнули лист бумаги) , кручение (работа отвёрткой, выжимание белья руками) , сдвиг (при торможении автомобиля шины деформируются за счёт силы трения) .
Закон Гука: Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
или
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации.
Формула закона Гука: Fупр=kx

Закон Гука. Можно выразить формулой F= -kх или F= kх?

⚓ Выдр ☸

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke). Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

Для тонкого растяжимого стержня закон Гука имеет вид:
Здесь F сила натяжения стержня, Δl - его удлинение (сжатие) , а k называется коэффициентом упругости (или жёсткостью) . Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения S и длины L) явно, записав коэффициент упругости как
Величина E называется модулем Юнга и зависит только от свойств тела.

Если ввести относительное удлинение
и нормальное напряжение в поперечном сечении
то закон Гука запишется как
В такой форме он справедлив для любых малых объёмов вещества.
[править]
Обобщённый закон Гука

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонентов) . Связывающий их тензор упругих постоянных является тензором четвёртого ранга Cijkl и содержит 81 коэффициент. Вследствие симметрии тензора Cijkl, а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:
Для изотропного материала тензор Cijkl содержит только два независимых коэффициента.

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.
[править]

короче, можно и так, и так, смотря что вы хотите указать в итоге: просто модуль силы Гука или еще и направление этой силы. Строго говоря, конечно, -kx, т. к. сила Гука направлена против положительного приращения координаты конца пружины.

При растяжении и сжатии стержня изменяются его длина и размеры поперечного сечения. Если мысленно выделить из стержня в недеформированном состоянии элемент длиной dx, то после деформации его длина будет равна dx { (рис. 3.6). При этом абсолютное удлинение по направлению оси Ох будет равно

а относительная линейная деформация е х определяется равенством

Поскольку ось Ох совпадает с осью стержня, вдоль которой действуют внешние нагрузки, назовем деформацию е х продольной деформацией, у которой в дальнейшем индекс будем опускать. Деформации в направлениях, перпендикулярных к оси, называются поперечными деформациями. Если обозначить через b характерный размер поперечного сечения (рис. 3.6), то поперечная деформация определяется соотношением

Относительные линейные деформации являются безразмерными величинами. Установлено, что поперечные и продольные деформации при центральном растяжении и сжатии стержня связаны между собой зависимостью

Входящая в это равенство величина v называется коэффициентом Пуассона или коэффициентом поперечной деформации. Этот коэффициент является одной из основных постоянных упругости материала и характеризует его способность к поперечным деформациям. Для каждого материала он определяется из опыта на растяжение или сжатие (см. § 3.5) и вычисляется по формуле

Как следует из равенства (3.6), продольные и поперечные деформации всегда имеют противоположные знаки, что является подтверждением очевидного факта - при растяжении размеры поперечного сечения уменьшаются, а при сжатии увеличиваются.

Для различных материалов коэффициент Пуассона различен. Для изотропных материалов он может принимать значения в пределах от 0 до 0,5. Например, для пробкового дерева коэффициент Пуассона близок к нулю, а для резины он близок к 0,5. Для многих металлов при нормальных температурах величина коэффициента Пуассона находится в пределах 0,25+0,35.

Как установлено в многочисленных экспериментах, для большинства конструкционных материалов при малых деформациях между напряжениями и деформациями существует линейная связь

Этот закон пропорциональности впервые был установлен английским ученым Робертом Гуком и называется законом Гука.

Входящая в закон Гука постоянная Е называется модулем упругости. Модуль упругости является второй основной постоянной упругости материала и характеризует его жесткость. Поскольку деформации являются безразмерными величинами, из (3.7) следует, что модуль упругости имеет размерность напряжения.

В табл. 3.1 приведены значения модуля упругости и коэффициента Пуассона для различных материалов.

При проектировании и расчетах конструкций наряду с вычислением напряжений необходимо также определять перемещения отдельных точек и узлов конструкций. Рассмотрим способ вычисления перемещений при центральном растяжении и сжатии стержней.

Абсолютное удлинение элемента длиной dx (рис. 3.6) согласно формуле (3.5) равно

Таблица 3.1

Наименование материала

Модуль упругости, МПа

Коэффициент

Пуассона

Сталь углеродистая

Сплавы алюминия

Сплавы титана

(1,15-s-1,6) 10 5

вдоль волокон

(0,1 ^ 0,12) 10 5

поперек волокон

(0,0005 + 0,01)-10 5

(0,097 + 0,408) -10 5

Кладка из кирпича

(0,027 +0,03)-10 5

Стеклопластик СВАМ

Текстолит

(0,07 + 0,13)-10 5

Резина на каучуке

Интегрируя это выражение в пределах от 0 до х, получим

где и(х ) - осевое перемещение произвольного сечения (рис. 3.7), а С= и( 0) - осевое перемещение начального сечения х = 0. Если это сечение закреплено, то и(0) = 0 и перемещение произвольного сечения равно

Удлинение или укорочение стержня равно осевому перемещению его свободного торца (рис. 3.7), величину которого получим из (3.8), приняв х = 1:

Подставив в формулу (3.8) выражение для деформации? из закона Гука (3.7), получим

Для стержня из материала с постоянным модулем упругости Е осевые перемещения определяются по формуле

Входящий в это равенство интеграл можно вычислить двумя способами. Первый способ заключается в аналитической записи функции а(х) и последующем интегрировании. Второй способ основан на том, что рассматриваемый интеграл численно равен площади эпюры а на участке . Вводя обозначение

Рассмотрим частные случаи. Для стержня, растягиваемого сосредоточенной силой Р (рис. 3.3, а), продольная сила./Vпостоянна по длине и равна Р. Напряжения а согласно (3.4) также постоянны и равны

Тогда из (3.10) получаем

Из этой формулы следует, что если напряжения на некотором участке стержня постоянны, то перемещения изменяются по линейному закону. Подставляя в последнюю формулу х = 1, найдем удлинение стержня:

Произведение EF называется жесткостью стержня при растяжении и сжатии. Чем больше эта величина, тем меньше удлинение или укорочение стержня.

Рассмотрим стержень, находящийся под действием равномерно распределенной нагрузки (рис. 3.8). Продольная сила в произвольном сечении, отстоящем на расстоянии х от закрепления, равна

Разделив N на F, получим формулу для напряжений

Подставляя это выражение в (3.10) и интегрируя, находим


Наибольшее перемещение, равное удлинению всего стержня, получим, подставив в (3.13)х = /:

Из формул (3.12) и (3.13) видно, что если напряжения линейно зависят отх, то перемещения изменяются по закону квадратной параболы. Эпюры N, о и и показаны на рис. 3.8.

Общая дифференциальная зависимость, связывающая функции и(х) и а(х), может быть получена из соотношения (3.5). Подставляя в это соотношение е из закона Гука (3.7), найдем

Из этой зависимости следуют, в частности, отмеченные в рассмотренных выше примерах закономерности изменения функции и(х).

Кроме того, можно заметить, что если в каком-либо сечении напряжения а обращаются в нуль, то на эпюре и в этом сечении может быть экстремум.

В качестве примера построим эпюру и для стержня, изображенного на рис. 3.2, положив Е- 10 4 МПа. Вычисляя площади эпюры о для различных участков, находим:

сечение х = 1 м:

сечение х = 3 м:

сечение х = 5 м:

На верхнем участке стержня эпюра и представляет собой квадратную параболу (рис. 3.2, е). При этом в сечении х = 1 м имеется экстремум. На нижнем участке характер эпюры является линейным.

Общее удлинение стержня, которое в данном случае равно

можно вычислить, воспользовавшись формулами (3.11) и (3.14). Поскольку нижний участок стержня (см. рис. 3.2, а) растягивается силой Р { его удлинение согласно (3.11) равно

Действие силы Р { передается также и на верхний участок стержня. Кроме того, он сжимается силой Р 2 и растягивается равномерно распределенной нагрузкой q. В соответствии с этим изменение его длины вычисляется по формуле

Суммируя значения А/, и А/ 2 , получим тот же результат, что приведен выше.

В заключение следует отметить, что, несмотря на малую величину перемещений и удлинений (укорочений) стержней при растяжении и сжатии, пренебрегать ими нельзя. Умение вычислять эти величины важно во многих технологических задачах (например, при монтаже конструкций), а также для решения статически неопределимых задач.

Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Действие внешних сил на твердое тело приводит к возникновению в точках его объема напряжений и деформаций. При этом напряженное состояние в точке, связь между напряжениями на различных площадках, проходящих через эту точку, определяются уравнениями статики и не зависят от физических свойств материала. Деформированное состояние, связь между перемещениями и деформациями устанавливаются с привлечением геометрических или кинематических соображений и также не зависят от свойств материала. Для того чтобы установить связь между напряжениями и деформациями, необходимо учитывать реальные свойства материала и условия нагружения. Математические модели, описывающие соотношения между напряжениями и деформациями, разрабатываются на основе экспериментальных данных. Эти модели должны с достаточной степенью точности отражать реальные свойства материалов и условия нагружения.

Наиболее распространенными для конструкционных материалов являются модели упругости и пластичности. Упругость — это свойство тела изменять форму и размеры под действием внешних нагрузок и восстанавливать исходную конфигурацию при снятии нагрузок. Математически свойство упругости выражается в установлении взаимно однозначной функциональной зависимости между.компонентами тензора напряжений и тензора деформаций. Свойство упругости отражает не только свойства материалов, но и условия нагружения. Для большинства конструкционных материалов свойство упругости проявляется при умеренных значениях внешних сил, приводящих к малым деформациям, и при малых скоростях нагружения, когда потери энергии за счет температурных эффектов пренебрежимо малы. Материал называется линейно-упругим, если компоненты тензора напряжений и тензора деформаций связаны линейными соотношениями.

При высоких уровнях нагружения, когда в теле возникают значительные деформации, материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются, а при полном снятии внешних нагрузок фиксируются остаточные деформации. В этом случае зависимость между напряжениями и деформациями перестает быть однозначной. Это свойство материала называется пластичностью. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими.

Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части. Твердые тела, выполненные из различных материалов, разрушаются при разной величине деформации. Разрушение носит хрупкий характер при малых деформациях и происходит, как правило, без заметных пластических деформаций. Такое разрушение характерно для чугуна, легированных сталей, бетона, стекла, керамики и некоторых других конструкционных материалов. Для малоуглеродистых сталей, цветных металлов, пластмасс характерен пластический тип разрушения при наличии значительных остаточных деформаций. Однако подразделение материалов по характеру разрушения на хрупкие и пластичные весьма условно, оно обычно относится к некоторым стандартным условиям эксплуатации. Один и тот же материал может вести себя в зависимости от условий (температура, характер нагружены я, технология изготовления и др.) как хрупкий или как пластичный. Например, пластичные при нормальной температуре материалы разрушаются как хрупкие при низких температурах. Поэтому правильнее говорить не о хрупких и пластичных материалах, а о хрупком или пластическом состоянии материала.

Пусть материал является линейно-упругим и изотропным. Рассмотрим элементарный объем, находящийся в условиях одноосного напряженного состояния (рис. 1), так что тензор напряжений имеет вид

При таком нагружении происходит увеличение размеров в направлении оси Ох, характеризуемое линейной деформацией , которая пропорциональна величине напряжения


Рис.1. Одноосное напряженное состояние

Это соотношение является математической записью закона Гука, устанавливающего пропорциональную зависимость между напряжением и соответствующей линейной деформацией при одноосном напряженном состоянии. Коэффициент пропорциональности E называется модулем продольной упругости или модулем Юнга. Он имеет размерность напряжений.

Наряду с увеличением размеров в направлении действия; же напряжения происходит уменьшение размеров в двух ортогональных направлениях (рис. 1). Соответствующие деформации обозначим через и , причем эти деформации отрицательны при положительных и пропорциональны :

При одновременном действии напряжений по трем ортогональным осям, когда отсутствуют касательные напряжения, для линейно-упругого материала справедлив принцип суперпозиции (наложения решений):

С учетом формул (1 — 4) получим

Касательные напряжения вызывают угловые деформации, причем при малых деформациях они не влияют на изменение линейных размеров, и следовательно, на линейные деформации. Поэтому они справедливы также в случае произвольного напряженного состояния и выражают так называемый обобщенный закон Гука.

Угловая деформация обусловлена касательным напряжением , а деформации и — соответственно напряжениями и . Между соответствующими касательными напряжениями и угловыми деформациями для линейно-упругого изотропного тела существуют пропорциональные зависимости

которые выражают закон Гука при сдвиге. Коэффициент пропорциональности G называется модулем сдвига. Существенно, что нормальное напряжение не влияет на угловые деформации, так как при этом изменяются только линейные размеры отрезков, а не углы между ними (рис. 1).

Линейная зависимость существует также между средним напряжением (2.18), пропорциональным первому инварианту тензора напряжений, и объемной деформацией (2.32), совпадающей с первым инвариантом тензора деформаций:



Рис.2. Плоская деформация сдвига

Соответствующий коэффициент пропорциональности К называется объемным модулем упругости.

В формулы (1 — 7) входят упругие характеристики материала Е, , G и К, определяющие его упругие свойства. Однако эти характеристики не являются независимыми. Для изотропного материала независимыми упругими характеристиками являются две, в качестве которых обычно выбираются модуль упругости Е и коэффициент Пуассона . Чтобы выразить модуль сдвига G через Е и , рассмотрим плоскую деформацию сдвига под действием касательных напряжений (рис. 2). Для упрощения выкладок используем квадратный элемент со стороной а. Вычислим главные напряжения , . Эти напряжения действуют на площадках, расположенных под углом к исходным площадкам. Из рис. 2 найдем связь между линейной деформацией в направлении действия напряжения и угловой деформацией . Большая диагональ ромба, характеризующая деформацию , равна

Для малых деформаций

С учетом этих соотношений

До деформации эта диагональ имела размер . Тогда будем иметь

Из обобщенного закона Гука (5) получим

Сравнение полученной формулы с записью закона Гука при сдвиге (6) дает

В итоге получим

Сравнивая это выражение с объемным законом Гука (7), приходим к результату

Механические характеристики Е, , G и К находятся после обработки экспериментальных данных испытаний образцов на различные виды нагрузок. Из физического смысла все эти характеристики не могут быть отрицательными. Кроме того, из последнего выражения следует, что коэффициент Пуассона для изотропного материала не превышает значения 1/2. Таким образом, получаем следующие ограничения для упругих постоянных изотропного материала:

Предельное значение приводит к предельному значению , что соответствует несжимаемому материалу ( при ). В заключение выразим из соотношений упругости (5) напряжения через деформации. Запишем первое из соотношений (5) в виде

С использованием равенства (9) будем иметь

Аналогичные соотношения можно вывести для и . В результате получим

Здесь использовано соотношение (8) для модуля сдвига. Кроме того, введено обозначение

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ

Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует сила . Эта сила совершает работу на перемещении . При увеличении напряжения от нулевого уровня до значения соответствующая деформация в силу закона Гука также увеличивается от нуля до значения , а работа пропорциональна заштрихованной на рис. 4 площади: . Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: . Величина Ф=dU / dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, - тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.